
D/oxy Dox TheStrikeAgency.com January 2023

D/oxy
Symbolic
regression for
the browser.

What is it?

D /oxy is a for-fun, free as in beer, homemade symbolic regression program
that runs on your own puny local CPU. You give D/oxy a set of data (like a

spreadsheet with a bunch of columns) and it tries to randomly evolve expressions
that can accurately predict one column by looking at the others.

D/oxy is written in Javascript and is, therefore, much slower to arrive at answers
than programs with similar aims like Eureqa or TuringBot, which now run in the
cloud. On the other hand, D/oxy is free, and surprisingly quick.

History: Why did I write this?

S illy rabbit. I wrote it to crack the stock market, predict earthquakes, and
improve my sportsbetting average. (It only became clear that it doesn't really

work for any of those things after I wrote it. See: Overfitting. Mainly now it is just
for fun. Or maybe that's just what I want you to believe.)

The real history is, back in 2004, years before I ever heard the term symbolic
regression, I was fascinated with building procedurally generated games (like my
favorite game as a kid) and creating simple rules on paper that could evolve into
complicated, emergent behaviors. I was making most of my games and business
apps in Flash and Flex at the time, so I wrote the first version of this thing called
D/oxy in Actionscript 2 and PHP. The PHP code did most of the heavy lifting. It
fetched data out of a mysql database, and used SOAP calls to distribute the
evolutionary algorithms to multiple servers, evaluate them, and then return the
data at each iteration to the Flash front-end. I only had two actual servers at the

1

http://TheStrikeAgency.com
https://en.wikipedia.org/wiki/Symbolic_regression
https://justforfunnoreally.dev/
https://justforfunnoreally.dev/
https://www.abandonwaredos.com/abandonware-game.php?abandonware=Starflight+2:+Trade+routes+of+the+Cloud+Nebula&gid=1489

D/oxy Dox TheStrikeAgency.com January 2023

time, but I imagined that D/oxy would need thousands of servers, so writing a
whole SOAP architecture seemed pretty awesome. Yeah, I was young and dumb.

Looking back, D/oxy1 actually had some very interesting features I'd like to try
again. It was very visual. Although arguably we would say now that its logic was a
bit too bound to a certain graphical/spatial construct to be flexible or effective as
a scientific tool, maybe that wasn't a bad thing. It did lead to some neat output.

The action in D/oxy1 took place on a large grid, like Conway's Game of Life. The
grid could be layered with colorful substrates of "sugar" - each layer represented
a dataset over time, such as a different stock with its volume and price and other
daily data. Then "bacteria" would spawn on the grid. Each bacterium would have
some "DNA" that was a set of expressions it would run to try to accurately model
and consume the data under it, at each tick of the clock. The best DNA would
remain activated, while DNA that failed would be ignored and eventually
discarded. Bacteria gained and lost "energy" points based on how accurate they
were in getting the right result for the target column in the data at each row. If
they ran out of energy, they died. But if they gained enough points, they could
clone themselves into an adjoining grid cell, if one was empty, or trade DNA
strands with the bacteria in the next cell if it wasn't. The adjoining grid cell might
have a totally, or slightly different "sugar" substrate of data; perhaps a different
set of stocks from the same market sector, blending into a different market sector
a little further over. A bacterium would have to adapt to the new conditions or die.

A couple years after I wrote
D/oxy1 and had been

messing around with
earthquake data and stocks,
mostly pointlessly, a program
called Eureqa was published
free-to-use by a group at
Cornell University. I was blown

2

Some screenshots from the original D/oxy, sometime around
2007. One of the weirdest things I was able to get out of the
it, that may have had to do with its spatial nature, was a
prediction a week in advance of a major earthquake in Chile
based only on the positions of other recent ones around the
Pacific Rim. I'm not kidding.

http://TheStrikeAgency.com

D/oxy Dox TheStrikeAgency.com January 2023

away by it. It did essentially the same thing, but much, much faster (even in
Windows emulation on a Mac), and with the much more direct approach of simply
having a huge list of expressions competing to model one big piece of data. I
hadn't thought of trying that, but I was impressed at how well it seemed to work.
This was clearly built by and for serious people, which I am not. I had mostly
abandoned D/oxy by that point, but I spent awhile messing around with Eureqa
and returned to it from time to time, to test out ideas. I figured the problem had
been solved. Unfortunately, (or fortunately for them!) that college project became
a for-profit company, killed off the offline shareware version of their software, and
put the computation into the cloud. Then they started charging absurd sums of
money to use it. Who could be using this? I wondered. Is this bizarre little trick of
evaluating random math actually worth millions of dollars to someone?
Because ...frankly, I couldn't see it.

About 15 years went by and I mostly forgot about the D/oxy experiment, and
about genetic algorithms / symbolic regression in general. One day though,
during the pandemic, I was looking through piles of old Flash programs and
lamenting that I could never compile them again. At the same time, I'd been
playing with writing a common worker pool library for sharding big computations
to Nodejs workers and webworkers, and I decided it was worth resurrecting D/
oxy in a quicker and dirtier way with Typescript. The first of these, D/oxy2, had
basically no graphical UI. What you see here is D/oxy3. Graphical and free.

The essence of the original Flash and PHP-based, D/oxy1 recipe for evolving
polynomials is mostly preserved in this (and enhanced with logical functions), but
I took the Eureqa approach for now and just made it a single stack of competing
expressions.

Now that I think the tools and horsepower exist on the desktop to do what I
intended with the original D/oxy, I'd like to keep (de)volving it back toward the
original idea with all its odd spatial directions. But for now, here it is.

Basic usage.

Import a CSV file with some columns of data. Your CSV must have a top row with
column names. One of these will be your target column that you're trying to

predict; each expression will test its results against that column. No expression is
allowed to use the target column to figure out the target column (although,
strange things will happen if you switch the target column in the middle of a run).

3

http://TheStrikeAgency.com

D/oxy Dox TheStrikeAgency.com January 2023

Image: This dataset shows the area of a circle with a
given radius. The target column is set to "area" and you
can see it's green and its checkbox is lit and grayed out.
The blue checkboxes tell D/oxy whether or not to use the
column at all. Note the small white arrow in a circle
pointing at "radius". That means lookbacks are
available. More on that in a second.

The numbers in white under radius and area are the basic
data from the CSV we imported. The numbers in green
beside area are D/oxy's best approximation, as it's
running, based on the most accurate polynomial it's
evolved from the non-target columns (in this case, from
radius). When it's not running, you can roll over those
green numbers (with a mouse, on a computer - you're not
reading this on a phone are you?) and see which

expressions scored highest. You can then go into the Monitor section and pin
them, if you like 'em so much.

Next to the Target Column dropdown, there's a field for Target Ahead. If you set
Target Ahead to 3, D/oxy will create 3 fake rows at the end of your data, to
magically predict the future. Instead of evaluating the current row, it will evolve
expressions that take whatever row it's looking at and try to guess the target
column of the row 3 after it. Doing this also means that the first 3 rows of your
data at the bottom are being used to generate results, but don't get results
themeslves. They are to be ignored. Which brings us to two important special
values in D/oxy: N and F.

N means a row may be mined for
its data, but it's not being
evaluated. That's either because
you set target ahead or because
the expression in question has
evolved to look back and this
particular row doesn't have enough

rows before it to look back at. Either
way, N means not enough information to evaluate.

F means a row is in the future. If you want to leave gaps in your target column
data, don't leave them blank; write the letter F in them. If D/oxy sees a null or
blank in the target column, it might evaluate it as meaning zero. It will then think
its prediction was way far off. Write F in an otherwise numerical column to

4

D/oxy can't predict this row because the best
expression it's found requires 3 rows of prior data to
compare with, and since this is only row 3 it doesn't
have enough rows before it to make a prediction.

http://TheStrikeAgency.com

D/oxy Dox TheStrikeAgency.com January 2023

indicate that you want D/oxy to not test itself against this particular result, but
simply to predict it.

Okay, I added a CSV.

Cool. Now hit that big ugly thing that says START and have
a go. The dropdown box above it shows how many

threads/workers you're going to use. Please don't set it to
more than the number of cores you have or your computer
will go boom. The number to the left of the dropdown shows

how many workers your file has previously been sharded to. If
you add more workers than that, it'll clone your best results out to the extra
workers. If you reduce the number of workers below it, it'll eliminate some of your
results and round-robin the best ones to the available threads. Best results from
one thread are also passed around between workers as you run, on a rolling
basis. See that save button? The Load and Save buttons let you keep all your
results. They also save a copy of your original data inside the JSON formatted
file, because we're not running this on a server.

There's a NodeJS-based version of this, that takes SQL queries and sqlite files.
It's not what you're looking at. So this version saves all your big data in each file
with the solutions instead of fetching it on the fly. Sorry. But you don't want to
upload all that proprietary data to my server, and I sure as hell don't want to host
it, so we'll have to live with this arrangement.

Monitoring and pruning.

T here are probably a lot of ways I could optimize this thing by automatically
tweaking survival tolerances, throttling it if your CPU is hot enough to fry

eggs on, etc. I haven't done any of those. Instead, you have the Monitor section.

The Monitor section shows all the polynomials you've evolved, and lets you
interact with the worker threads in semi-realtime. That is to say, it broadcasts
your changes when you make them, but the workers might already be working on
the next line of the solution.

5

http://TheStrikeAgency.com

D/oxy Dox TheStrikeAgency.com January 2023

Left: Each solution shows its last accuracy for root mean
square error (RS), mean absolute error (MA), and the non-
absolute average mean difference (M) between predictions and
desired results. The one underlined is the one that was used to
evaluate. vs. 48 means it was run against 48 rows. u 48 / ig 0 /
n 0 means that 48 rows were utilized (and averaged into the

MAE), 0 rows were ignored as a result of lookbacks or target-ahead, and 0 rows
produced null results (which includes division by zero / Infinity / undefined and
any error cases).

6

Make sure to hit the tiny arrow to the left of "reserve" so you can see all the options.

Red lines are the best individual solutions. Their brightness is stronger the better they are. Blue lines are
solutions you have pinned, which may suck or not; it's your prerogative. The yellow line is an average.
The first polynomial solution - the green area with white text under the graphs - is (1) pinned, because
you clicked the blue pin while it wasn't running (you can't pin them while D/oxy is running, it runs too
fast and asynchronously; you have to stop it to pin things). (2) its background is green which means it's
protected as part of the reserve on its thread, which is thread 1 based on the data to the right.

Also, if its text turns green for a second, that's because its solution just improved a little bit.

http://TheStrikeAgency.com

D/oxy Dox TheStrikeAgency.com January 2023

Most importantly for USING D/OXY: All those fields with little numbers have to
broadcast their changes to the workers. They do that when they lose focus (click
off them after inputing a new number), and also do it every time you use the
up/down arrows to change their value. Which is to say that nothing gets
updated if you type a new number and leave your cursor sitting there. That's on
purpose, because we all know how easy it is to accidentally type the wrong

number. Please read this paragraph again at least twice before you lose the
answer to the meaning of life. You've been warned.

Use the controls in the Monitor section to adjust how D/oxy evolves its
expressions. I'm planning to add more help icons, but for now here are the most
crucial bits:

Wait. Timeout. Hang on. Am I expected to be adjusting these values while it
runs, like I'm playing a video game as I try to evolve my solution?

Yes, yes you are. You'll end up with better results more quickly if you take
an active hand and guide the garden's growth. If you come up with a
reliable algorithm for automatically adjusting these values based on
other values over time, you just created an automatic gardener that I'd
love to include in a future version.

Basic Options

Let's take it from the left. I'm going to stop saying "polynomial" now and just call
D/oxy's solutions "expressionss", because it's easier to type, and I dropped out
of art school.

RESERVE: For every whole number, you are telling D/oxy it must save an
expression in each thread, no matter how bad it sucks, reserving it when it kills
off the ones that don't meet its survival criteria. The reserve expressions have a

7

Changes to your preferences are sent to the running workers, which update asynchronously.

http://TheStrikeAgency.com

D/oxy Dox TheStrikeAgency.com January 2023

green background in your list. You can choose to allow reserves to mutate or not
in the secondary options. (You should allow it. Generally, less death and more
mutation breeds better results than the opposite).

POOL SIZE: How many expressions do you want to keep for each thread? This
has a huge impact on performance, obviously. Every expression in your pool will
have to run against every line in your data (see run against below) before a tick
can be completed.

KILL: The maximum number of expressions that can be killed on each tick. Up to
this many will be killed if they're (a) not reserved, (b) not pinned, and (c) not
within the survival tolerance. Note that lowering the pool size will also kill the
worst performers, and expressions with too many null-ish/imaginary results are
killed even if kill is set to zero. Setting the kill to 1 less than the pool size when
nothing meets survival tolerance will still preserve the top expression, and is
effectively the same as setting the reserve to 1.

RUN AGAINST: How many rows should each expression test itself against, on
each tick. Note that ticks occur on workers so they're not synchronous. But each
expression checks against X number of rows, averages out its success rate, and
there's your accuracy score. Earlyish rows that can't be calculated because
lookbacks don't count, and future rows don't get judged; run against takes these
into account and doesn't penalize you for rows that are ignored; it just ignores
them. Generally for a short data set, just set run against to a number as big as
the number of rows, or larger (you can also loop). But sometimes you want your
expressions to crawl across the data and evolve over time. This gives you the
option. One thing that's particularly effective is setting run against to 80% of
your number of rows and then slowly increasing it. Pinned expressions run
against the entire dataset by default.

SURVIVE TOLERANCE / REPLICATE TOLERANCE: The concept of accuracy in
D/oxy is that perfect accuracy is zero. The higher the accuracy number, the less
accurate the expression is. An expression will be killed if its accuracy is higher
than the survive tolerance and you have "kill" set to something above zero. In
MAE or RMSE modes, accuracy is literally the mean absolute error or root mean
squared error of that error, averaged over the set that the expression was just run
against. In "WIN/OU" mode, which means "over-under", the expression is
considered a simple win or loss based on whether its result and the target column
share a plus or minus sign. So in "WIN/OU" mode, accuracy is the inverse of the
win percentage. If you have an expression "winning" 90% of the time, you need
to set survive tolerance to below 0.1 to kill it.

8

http://TheStrikeAgency.com

D/oxy Dox TheStrikeAgency.com January 2023

Replication happens randomly, and only within the same thread. All replicants get
at least one mutation. Every expression below the replicate tolerance is eligible
to clone itself on every tick. expReplicationProb is the relevant control to how
likely it is to actually replicate if it meets that tolerance.

MAXLOOKBACK: This is the global control to allow columns to compare and run
group functions on their previous data. See below for more about lookbacks.
Please note: Changing this to a lower value does not modify or kill expressions in
the pool that already rely on longer lookbacks. They will still be around unless you
clear them.

MAXNULLPERC: We talked about N and F. But what if an expression spits out
Infinity or NaN? This tells us what percentage of the potentially evaluable run
against we are willing to tolerate being imaginary numbers or absurdities before
we throw out the whole expression. Why are the Lakers going to get infinity points
next game? I don't know. Fuckit. We have to keep moving.

WIN/OU / MAE / RMSE: How should we evaluate how close the expression is to
the predicting the target column? Mean average error or root of same are
standard. Win/OU is a D/oxy thing that can be thought of as "yes or no": If the
column is a positive number and the solution is positive, it's a win. If the column
is negative and the solution is negative, it's a win. If zero, it's a push. I told you I
was trying to improve my sportsbetting average...

CLEAR: Nukes all your expressions.

PAUSE: Maybe unintuitively, this doesn't stop the run.
It tells D/oxy to keep running but just stops all
mutations and clones. This is useful. Here's why. If
you load a new CSV file into D/oxy that has the exact
same fields as the old one, D/oxy will keep your

lookback preferences on all the columns, and will not clear out your expressions.
So suppose you trained a bunch of expressions on one season of the NBA. You're
winning 100% of your games. You just want to see how those expressions stack
up against the next season... but the problem is, when you load the next season,
your expressions will start mutating right away to get better at predicting the new
data. You don't want them to mutate, you just want to know how well these
expressions work. So, aha. You stop D/oxy, hit the pause button, load in the new
data and start D/oxy again. No mutations or replications will happen; you just run
your old expressions across the new dataset and see how it performs.

9

In nature, red indicates
danger.

http://TheStrikeAgency.com

D/oxy Dox TheStrikeAgency.com January 2023

Most settings with `prob` in the name...

T hese are probabilities of certain types of mutations being attempted on each
tick. If it's a fraction of 1, like say 0.5, a mutation will be attempted randomly

50% of the time. If you want it to happen more than once per tick, set it to a
whole number larger than 1, and that's how many times this type of mutation will
be attempted on each tick. These fields increment by 0.05 when you use the
arrow keys, but decimal places on numbers larger than 1 are ignored.

How Mutations Work

When an expression mutates in D/oxy, it is guaranteed to be an improvement. For
every mutation, a temporary clone is made and mutated and then compared to
the original against the same run against dataset. If the clone doesn't perform as
well as the original, it's discarded. If it improves on the original, it replaces the
original expression and the original expression text flashes green in the Monitor
section. So just because something tries to mutate on every tick doesn't mean it
actually replaces itself. It only replaces itself if the mutation performs better. On
the other, other hand, your mutation rate also affects how new clones are
born, and they will survive for one tick no matter what.

Lookbacks. (Under the Data tab).

Imagine your target column is the closing price of a stock, and the only input
columns you have are the opening price and the volume. Maybe you'd generate

another column to show yesterday's last closing price, and another for the
moving average, and another for volatility, etc. D/oxy has the concept of
lookbacks which let the genetic algorithms access historical data for your
columns. D/oxy's evolved expressions are always denoted this way:

10

http://TheStrikeAgency.com

D/oxy Dox TheStrikeAgency.com January 2023

Notice the [square brackets]. They imply how many rows back in the data we're
talking about. So he're we're trying to guess a circle's area from the radius.
radius[1] is the radius one row back in the data. You can see how a group
function like MEDIAN[0-3] can take a range backwards from the current point in
time.

Every column in your data can be specified to have:

DEFAULT LOOKBACK. Defaults to the maxLookback specified in the
monitor section.

FORCE LOOKBACK. Expressions are not allowed to use the column's
current value to predict the target column, but they may evolve to use prior
values from this column (up to the range set by maxLookback). This is

incompatible with setting maxLookback to zero, and the sim will protest if you do.

NO LOOKBACK. The column is prevented from ever seeking its own history
as a source of guessing.

MATCH LOOKBACK. AFAIK this is unique to D/oxy, and very powerful.
When you set this on a column, all the historical data is filtered to match
the current value of this column. Only then are other columns' lookbacks

applied. A good example would be a list of all the Laker games for a year. When
you get to a row where the Lakers were playing the Nets, you want all your other
lookbacks to point to the last time those two teams played. So you set match
lookback on the home and away teams. Now, POINTS_HOME[1] will not refer to
the last game in the Lakers' season, but the last game where the Lakers played
the Nets (at home). Note that this incurs a penalty with a lot of N (not evaluated)
results if you're looking back a few games and the Lakers haven't played the Nets
enough times yet.

Match lookbacks are additive; every column you set them on must match for a
row to be a valid lookback row. They themselves are often words (strings) so
they're not doing anything. They control and filter out what all other columns are
able to see when they look backwards.

11

http://TheStrikeAgency.com

D/oxy Dox TheStrikeAgency.com January 2023

Final thoughts

T here are a lot of quirks and features to D/oxy I'm not covering in this
document. This was never really intended to be seen or used by the public.

Whenever I see people offering to sell me something that'll make me rich and
cure my problems I just think, if this person could cure their own problems they
wouldn't be making infomercials to sell me their system for $49.99. Y'know? Like,
if I claimed D/oxy actually solved the NBA or the stock market, and I tried to sell it
to you...

Well, so, it doesn't. And I'm not. Here you go. If you become a billionaire from it,
send me a tip. I'm rooting for ya.

I do hope to get people a little more interested in these kinds of solutions. In the
current excitement around AI diffusers, I think it's been forgotten how interesting
genetic algorithms can be. You don't really learn anything from the output of
diffusers. Informing you of how a solution was derived is, unfortunately, not a
feature of modern AI. Genetic algorithms are interesting not because they
magically spit out the solution to a big dataset, but because if you read the
expressions closely, you can sometimes infer correlations you wouldn't have
otherwise noticed, suggesting new ways to think about complex systems.

Do with it what you will.

*** If you would like to contribute to this project or talk about this stuff, or
work on something incredibly fun & interesting (not for a big tech company),
like a procedural world full of vicious little animals that evolve to eat other
little animals for no reason at all, or you just want to say hi, my email is:

Josh@TheStrikeAgency.com

Attributions

D/oxy utilizes the following code packages:

Math.js, Bootstrap (with tether.js), jQuery, DataTables, FileSaver.js, moment.js,
tooltipster, require.js, and pretty-checkbox.css.

12

http://TheStrikeAgency.com
mailto:josh@TheStrikeAgency.com

	What is it?
	History: Why did I write this?
	Basic usage.
	Okay, I added a CSV.
	Monitoring and pruning.
	Basic Options
	Most settings with `prob` in the name...
	How Mutations Work
	Lookbacks. (Under the Data tab).
	Final thoughts
	Attributions

